Mudge, K., Janick, J., Scofield, S. & Goldschmidt, EE A history of transplant. Hortic. Tower. 35, 437-493 (2009).
Google Scholar
Melnyk, CW & Meyerowitz, EM Plant transplant. Court. Biol. 25, 183-188 (2015).
Google Scholar
The list of plants v.1.1. http://www.theplantlist.org/ (2013).
Calderini, IM Trial of grass graft experiments [Experimental trials on grafting grasses]. Anne. Sci. Nat. Bot. 1846, 131â133 (1846).
Google Scholar
Muzik, TJ & La Rue, CD Grafting of large monocotyledonous plants. Science 116, 589-591 (1952).
Google Scholar
Obolensky, G. Transplantation of plant embryos and the use of ultrasound. Vegetable food Hum. Nutr. seven, 273-288 (1960).
Google Scholar
McCann, MC Chimeric plants â the best of both worlds. Science 369, 618-619 (2020).
Google Scholar
Melnyk, CW, Schuster, C., Leyser, O. & Meyerowitz, EM A development framework for graft formation and vascular reconnection in Arabidopsis thaliana. Court. Biol. 25, 1306-1318 (2015).
Google Scholar
Notaguchi, M. et al. Cell-cell adhesion in plant grafting is facilitated by -1,4-glucanases. Science 369, 698-702 (2020).
Google Scholar
Melnyk, CW et al. Dynamics of the transcriptome Arabidopsis graft junctions reveal a tissue recognition mechanism that activates vascular regeneration. Proc. Natl Acad. Sci. UNITED STATES. 115, E2447 â E2456 (2018).
Google Scholar
Iwase, A. et al. The AP2 / ERF WIND1 transcription factor controls cell dedifferentiation in Arabidopsis. Court. Biol. 21, 508-514 (2011).
Google Scholar
Pitaksaringkarn, W. et al. XTH20 and XTH19 regulated by ANAC071 under auxin flux are involved in cell proliferation in incised Arabidopsis inflorescence stems. Plant J. 80, 604-614 (2014).
Google Scholar
Asahina, M. et al. Spatially selective hormonal control of the transcription factors RAP2.6L and ANAC071 involved in tissue reunification in Arabidopsis. Proc. Natl Acad. Sci. United States 108, 16128â16132 (2011).
Google Scholar
Matsuoka, K. et al. The wound-inducible transcription factors ANAC071 and ANAC096 promote the formation of cambial cells in Arabidopsis flowering stems. Commmon. Biol. 4, 369 (2021).
Google Scholar
Wu, Y. et al. The rice transcription factor OsDOF11 modulates sugar transport by promoting the expression of Sucrose transporter and SOFT Genoa. Mol. Plant 11, 833-845 (2018).
Google Scholar
Zhong, R., Lee, C., Hahighat, M. & Ye, Z.-H. Xylem vessel-specific SND5 and its homologues regulate secondary wall biosynthesis by activating secondary wall NAC binding elements. New Phytol. 4, 1496-1509 (2021).
Google Scholar
RůžiÄka, K., Ursache, R., Hejátko, J. & Helariutta, Y. Development of Xylem â from cradle to grave. New Phytol. 207, 519-535 (2015).
Google Scholar
Zhao, B. et al. Members of the miR-169 family are induced by high salinity and transiently inhibit the transcription factor NF-YA. BMC Mol. Biol. ten, 29 (2009).
Google Scholar
Chan, PL et al. Early gene of the protein nodulin 93: essential for the induction of somatic embryogenesis in oil palm. Rep. Plant Cellular 39, 1395-1413 (2020).
Google Scholar
Schulze, S., Schäfer, BN, Parizotto, EA, Voinnet, O. & Theres, K. LOST MERITS genes regulate cell differentiation of offspring from the central area in Arabidopsis draw the meristems. Plant J. 64, 668-678 (2010).
Google Scholar
Wang, B., Sang, Y., Song, J., Gao, XQ & Zhang, X. Expression of a rice OsARGOS gene in Arabidopsis promotes cell division and expansion and increases organ size. J. Genet. Genomics 36, 31-40 (2009).
Google Scholar
Lee, SC, Kim, SJ, Han, SK, An, G. & Kim, SR Gibberellin-stimulated transcript, OsGASR1, controls seedling growth and ??-expression of amylase in rice. J. Physiol Végétal. 214, 116-122 (2017).
Google Scholar
Ueguchi-Tanaka, M. et al. DWARF INSENSITIVE TO GIBBERELLIN1 codes for a soluble gibberellin receptor. Nature 437, 693-698 (2005).
Google Scholar
Eguchi, S. & Tamura, MN Evolutionary timescale of monocots determined by the fossilized birth-death model using a large number of fossil records. Evolution 70, 1136-1144 (2016).
Google Scholar
Melnyk, CW Plant transplant: overview of tissue regeneration. Regeneration 4, 3-14 (2017).
Google Scholar
Umehara, M. et al. Inhibition of branching of shoots by the new terpenoids plant hormones. Nature 455, 195â200 (2008).
Google Scholar
Mylona, ââP. et al. Sad3 and Sad4 are necessary for the biosynthesis of saponin and for the root development of oats. Plant cell 20, 201-212 (2008).
Google Scholar
Scarpella, E. & Meijer, AH Pattern formation in the vascular system of monocot and dicot plant species. New Phytol. 164, 209-242 (2004).
Google Scholar
Jura-Morawiec, J., Tulik, M. & Iqbal, M. Lateral meristems responsible for secondary growth of monocots: inventory. Bot. Tower. 81, 150-161 (2015).
Google Scholar
Steffens, B. & Rasmussen, A. The physiology of adventitious roots. Plant physiiol. 170, 603-617 (2016).
Google Scholar
Tillich, HJ to Monocots: Systematics and evolution (eds Wilson, KL & Morrison, DA) 603-228 (CSIRO Publishing, 2000).
Burger, WC The question of cotyledon homology in angiosperms. Bot. Tower. 64, 356-371 (1998).
Google Scholar
Strosse, H., Houwe, I. & Panis, B. in Improvement of bananas: cellular and molecular biology and induced mutations (eds Mohan Jain, S. & Swennen, R.) 1â12 (Science Publishers, 2004).
Melnyk, CW in Xylem: Methods and Protocols (eds of Lucas, M. & Etchhells, JP) 91-102 (Humana Press, 2017).
Hollins, TW, Scott, PR & Gregory, RS The relative resistance of wheat, rye and triticale to take-all caused by Gaeumannomyces graminis. Plant pathol. 35, 93-100 (1986).
Google Scholar
Osbourn, AE, Clarke, BR, Lunness, P., Scott, PR & Daniels, MJ A species of oats without avenacin is susceptible to infection with Gaeumannomyces graminis var. tritici. Physiol. Mol. Plant pathol. 45, 457-467 (1994).
Chng, S., Cromey, MG & Butler, RC Assessment of the susceptibility of various grass species to Gaeumannomyces graminis var. tritici. NZ Plant Prot. 58, 261-267 (2005).
Google Scholar
Löytynoja, A. & Goldman, N. Placement of phylogeny sensitive gaps prevents errors in sequence alignment and evolutionary analysis. Science 320, 1632-1635 (2008).
Google Scholar
Katoh, K. & Standley, DM MAFFT Version 7 Multiple Sequence Alignment Software: Performance and Usability Improvements. Mol. Biol. Evol. 30, 772-780 (2013).
Google Scholar
Brown, JW, Walker, JF & Smith, SA Phyx: phylogenetic tools for unix. Bioinformatics 33, 1886-1888 (2017).
Google Scholar
Kozlov, AM, Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453-4455 (2019).
Google Scholar
Smith, SA & O’Meara, BC TreePL: Estimating time to divergence using penalized likelihood for large phylogenies. Bioinformatics 28, 2689-2690 (2012).
Google Scholar
Hedges, SB, Dudley, J. & Kumar, S. TimeTree: A public knowledge base on times of divergence between organisms. Bioinformatics 22, 2971-2972 (2006).
Iwata, N. & Omura, T. Linkage analysis by the reciprocal translocation method in rice plants (Oryza sativa L.) I. Linking groups corresponding to chromosomes 1, 2, 3 and 4. Japan. J. Race. 21, 19-28 (1971).
Google Scholar