Monocotyledonous plants grafted at the embryonic root-shoot interface

0
  • 1.

    Mudge, K., Janick, J., Scofield, S. & Goldschmidt, EE A history of transplant. Hortic. Tower. 35, 437-493 (2009).

    Google Scholar

  • 2.

    Melnyk, CW & Meyerowitz, EM Plant transplant. Court. Biol. 25, 183-188 (2015).

    Google Scholar

  • 3.

    The list of plants v.1.1. http://www.theplantlist.org/ (2013).

  • 4.

    Calderini, IM Trial of grass graft experiments [Experimental trials on grafting grasses]. Anne. Sci. Nat. Bot. 1846, 131–133 (1846).

    Google Scholar

  • 5.

    Muzik, TJ & La Rue, CD Grafting of large monocotyledonous plants. Science 116, 589-591 (1952).

    ADS
    CASE
    PubMed

    Google Scholar

  • 6.

    Obolensky, G. Transplantation of plant embryos and the use of ultrasound. Vegetable food Hum. Nutr. seven, 273-288 (1960).

    Google Scholar

  • seven.

    McCann, MC Chimeric plants — the best of both worlds. Science 369, 618-619 (2020).

    ADS
    CASE
    PubMed

    Google Scholar

  • 8.

    Melnyk, CW, Schuster, C., Leyser, O. & Meyerowitz, EM A development framework for graft formation and vascular reconnection in Arabidopsis thaliana. Court. Biol. 25, 1306-1318 (2015).

    CASE
    PubMed
    PubMed Central

    Google Scholar

  • 9.

    Notaguchi, M. et al. Cell-cell adhesion in plant grafting is facilitated by -1,4-glucanases. Science 369, 698-702 (2020).

    ADS
    CASE
    PubMed

    Google Scholar

  • ten.

    Melnyk, CW et al. Dynamics of the transcriptome Arabidopsis graft junctions reveal a tissue recognition mechanism that activates vascular regeneration. Proc. Natl Acad. Sci. UNITED STATES. 115, E2447 – E2456 (2018).

    CASE
    PubMed
    PubMed Central

    Google Scholar

  • 11.

    Iwase, A. et al. The AP2 / ERF WIND1 transcription factor controls cell dedifferentiation in Arabidopsis. Court. Biol. 21, 508-514 (2011).

    CASE
    PubMed

    Google Scholar

  • 12.

    Pitaksaringkarn, W. et al. XTH20 and XTH19 regulated by ANAC071 under auxin flux are involved in cell proliferation in incised Arabidopsis inflorescence stems. Plant J. 80, 604-614 (2014).

    CASE
    PubMed

    Google Scholar

  • 13.

    Asahina, M. et al. Spatially selective hormonal control of the transcription factors RAP2.6L and ANAC071 involved in tissue reunification in Arabidopsis. Proc. Natl Acad. Sci. United States 108, 16128–16132 (2011).

    ADS
    CASE
    PubMed
    PubMed Central

    Google Scholar

  • 14.

    Matsuoka, K. et al. The wound-inducible transcription factors ANAC071 and ANAC096 promote the formation of cambial cells in Arabidopsis flowering stems. Commmon. Biol. 4, 369 (2021).

    CASE
    PubMed
    PubMed Central

    Google Scholar

  • 15.

    Wu, Y. et al. The rice transcription factor OsDOF11 modulates sugar transport by promoting the expression of Sucrose transporter and SOFT Genoa. Mol. Plant 11, 833-845 (2018).

    CASE
    PubMed

    Google Scholar

  • 16.

    Zhong, R., Lee, C., Hahighat, M. & Ye, Z.-H. Xylem vessel-specific SND5 and its homologues regulate secondary wall biosynthesis by activating secondary wall NAC binding elements. New Phytol. 4, 1496-1509 (2021).

    Google Scholar

  • 17.

    Růžička, K., Ursache, R., Hejátko, J. & Helariutta, Y. Development of Xylem — from cradle to grave. New Phytol. 207, 519-535 (2015).

    PubMed

    Google Scholar

  • 18.

    Zhao, B. et al. Members of the miR-169 family are induced by high salinity and transiently inhibit the transcription factor NF-YA. BMC Mol. Biol. ten, 29 (2009).

    PubMed
    PubMed Central

    Google Scholar

  • 19.

    Chan, PL et al. Early gene of the protein nodulin 93: essential for the induction of somatic embryogenesis in oil palm. Rep. Plant Cellular 39, 1395-1413 (2020).

    CASE
    PubMed

    Google Scholar

  • 20.

    Schulze, S., Schäfer, BN, Parizotto, EA, Voinnet, O. & Theres, K. LOST MERITS genes regulate cell differentiation of offspring from the central area in Arabidopsis draw the meristems. Plant J. 64, 668-678 (2010).

    CASE
    PubMed

    Google Scholar

  • 21.

    Wang, B., Sang, Y., Song, J., Gao, XQ & Zhang, X. Expression of a rice OsARGOS gene in Arabidopsis promotes cell division and expansion and increases organ size. J. Genet. Genomics 36, 31-40 (2009).

    CASE
    PubMed

    Google Scholar

  • 22.

    Lee, SC, Kim, SJ, Han, SK, An, G. & Kim, SR Gibberellin-stimulated transcript, OsGASR1, controls seedling growth and ??-expression of amylase in rice. J. Physiol Végétal. 214, 116-122 (2017).

    CASE
    PubMed

    Google Scholar

  • 23.

    Ueguchi-Tanaka, M. et al. DWARF INSENSITIVE TO GIBBERELLIN1 codes for a soluble gibberellin receptor. Nature 437, 693-698 (2005).

    ADS
    CASE
    PubMed

    Google Scholar

  • 24.

    Eguchi, S. & Tamura, MN Evolutionary timescale of monocots determined by the fossilized birth-death model using a large number of fossil records. Evolution 70, 1136-1144 (2016).

    PubMed

    Google Scholar

  • 25.

    Melnyk, CW Plant transplant: overview of tissue regeneration. Regeneration 4, 3-14 (2017).

    CASE
    PubMed

    Google Scholar

  • 26.

    Umehara, M. et al. Inhibition of branching of shoots by the new terpenoids plant hormones. Nature 455, 195–200 (2008).

    ADS
    CASE
    PubMed

    Google Scholar

  • 27.

    Mylona, ​​P. et al. Sad3 and Sad4 are necessary for the biosynthesis of saponin and for the root development of oats. Plant cell 20, 201-212 (2008).

    CASE
    PubMed
    PubMed Central

    Google Scholar

  • 28.

    Scarpella, E. & Meijer, AH Pattern formation in the vascular system of monocot and dicot plant species. New Phytol. 164, 209-242 (2004).

    CASE
    PubMed

    Google Scholar

  • 29.

    Jura-Morawiec, J., Tulik, M. & Iqbal, M. Lateral meristems responsible for secondary growth of monocots: inventory. Bot. Tower. 81, 150-161 (2015).

    PubMed
    PubMed Central

    Google Scholar

  • 30.

    Steffens, B. & Rasmussen, A. The physiology of adventitious roots. Plant physiiol. 170, 603-617 (2016).

    CASE
    PubMed

    Google Scholar

  • 31.

    Tillich, HJ to Monocots: Systematics and evolution (eds Wilson, KL & Morrison, DA) 603-228 (CSIRO Publishing, 2000).

  • 32.

    Burger, WC The question of cotyledon homology in angiosperms. Bot. Tower. 64, 356-371 (1998).

    Google Scholar

  • 33.

    Strosse, H., Houwe, I. & Panis, B. in Improvement of bananas: cellular and molecular biology and induced mutations (eds Mohan Jain, S. & Swennen, R.) 1–12 (Science Publishers, 2004).

  • 34.

    Melnyk, CW in Xylem: Methods and Protocols (eds of Lucas, M. & Etchhells, JP) 91-102 (Humana Press, 2017).

  • 35.

    Hollins, TW, Scott, PR & Gregory, RS The relative resistance of wheat, rye and triticale to take-all caused by Gaeumannomyces graminis. Plant pathol. 35, 93-100 (1986).

    Google Scholar

  • 36.

    Osbourn, AE, Clarke, BR, Lunness, P., Scott, PR & Daniels, MJ A species of oats without avenacin is susceptible to infection with Gaeumannomyces graminis var. tritici. Physiol. Mol. Plant pathol. 45, 457-467 (1994).

    CASE

    Google Scholar

  • 37.

    Chng, S., Cromey, MG & Butler, RC Assessment of the susceptibility of various grass species to Gaeumannomyces graminis var. tritici. NZ Plant Prot. 58, 261-267 (2005).

    Google Scholar

  • 38.

    Löytynoja, A. & Goldman, N. Placement of phylogeny sensitive gaps prevents errors in sequence alignment and evolutionary analysis. Science 320, 1632-1635 (2008).

    ADS
    PubMed

    Google Scholar

  • 39.

    Katoh, K. & Standley, DM MAFFT Version 7 Multiple Sequence Alignment Software: Performance and Usability Improvements. Mol. Biol. Evol. 30, 772-780 (2013).

    CASE
    PubMed
    PubMed Central

    Google Scholar

  • 40.

    Brown, JW, Walker, JF & Smith, SA Phyx: phylogenetic tools for unix. Bioinformatics 33, 1886-1888 (2017).

    CASE
    PubMed
    PubMed Central

    Google Scholar

  • 41.

    Kozlov, AM, Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453-4455 (2019).

    CASE
    PubMed
    PubMed Central

    Google Scholar

  • 42.

    Smith, SA & O’Meara, BC TreePL: Estimating time to divergence using penalized likelihood for large phylogenies. Bioinformatics 28, 2689-2690 (2012).

    CASE
    PubMed

    Google Scholar

  • 43.

    Hedges, SB, Dudley, J. & Kumar, S. TimeTree: A public knowledge base on times of divergence between organisms. Bioinformatics 22, 2971-2972 (2006).

    CASE

    Google Scholar

  • 44.

    Iwata, N. & Omura, T. Linkage analysis by the reciprocal translocation method in rice plants (Oryza sativa L.) I. Linking groups corresponding to chromosomes 1, 2, 3 and 4. Japan. J. Race. 21, 19-28 (1971).

    Google Scholar


  • Source link

    Share.

    Comments are closed.